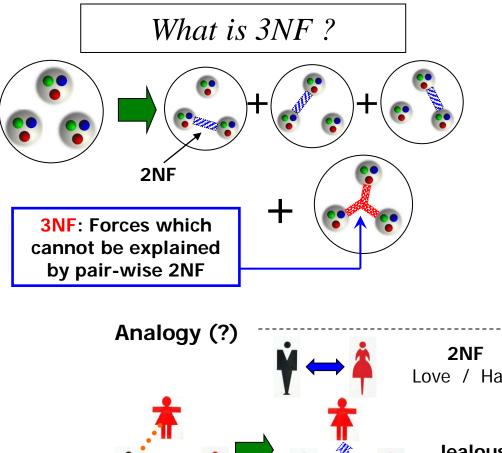
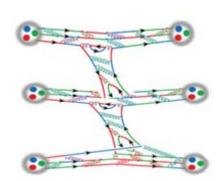

Nucleon-Nucleon Interactions from Lattice QCD

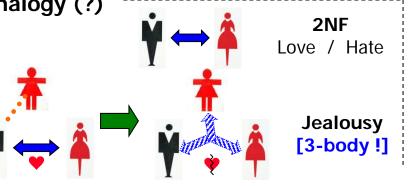
Takumi Doi (Nishina Center, RIKEN)

01/25/2013

Outline of the Lecture

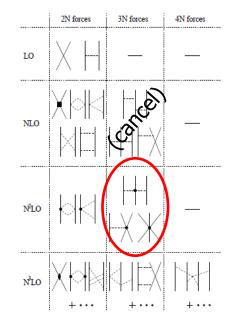

- Lecture 1
 - Introduction
 - Review of lattice QCD simulations (c.f. R.Gavai)
 - Quick overview of the framework (HAL QCD method)
 - Review of scattering problems
- Lecture 2 (tutorial)
 - Nambu-Bethe-Salpeter (NBS) wave function
 - Derivation of it's asymptotic behavior
 - Scatterings on the lattice
 - Derivation of Lushcer's formula


Outline of the Lecture


- Lecture 3
 - Application to Nucleon-Nucleon (NN) interaction
 - Energy independent potential
 - Other two-baryon interactions w/ hyperons
- Lecture 4
 - Application to Three-Nucleon (3N) interaction
 - Unified contraction algorithm
 - Summary / Prospects

Any questions are welcome !

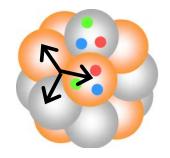
Frontier in Hadron-Hadron Interactions \Rightarrow Three-Nucleon Forces (3NF)



Three-Nucleon Forces (3NF)

- It is natural to expect the existence of 3NF
- It is very nontrivial to determine 3NF from QCD
- 2πE-3NF Fujita-Miyazawa, PTP17(1957)360
 - Off-energy-shell πN scatt

- Phenomenological models
 - Fujita-Miyazawa, Tucson-Melbourne, Urbana/Illinois, ...
- EFT expansion → 3NF appear at NNLO
- Are 3NF really important in physics ?


U.v.Kolck, PRC49(1994)2932 Epelbaum, Prog.Part.Nucl.Phys.57(06)654

01/25/2013

Frontier in Hadron-Hadron Interactions ⇒Three-Nucleon Forces (3NF)

♦ B.E. of light nuclei

Neutron rich nuclei
 Nucleosynthesis

Nucleon-deuteron scattering

EoS of nuclear matter
 Saturation point
 Neutron Star / SuperNova

3NF in Few-Body Systems

Precise few-body calc:

e.g. benchmark calc of ⁴He by 7 methods (2NF only)

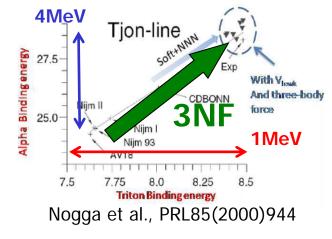
Method	$\langle T \rangle$	$\langle V \rangle$	E _b	$\sqrt{\langle r^2 \rangle}$
FY	102.39(5)	-128.33(10)	-25.94(5)	1.485(3)
CRCGV	102.30	-128.20	-25.90	1.482
SVM	102.35	-128.27	-25.92	1.486
HH	102.44	-128.34	-25.90(1)	1.483
GFMC	102.3(1.0)	-128.25(1.0)	-25.93(2)	1.490(5)
NCSM	103.35	-129.45	-25.80(20)	1.485
EIHH	100.8(9)	-126.7(9)	-25.944(10)	1.486

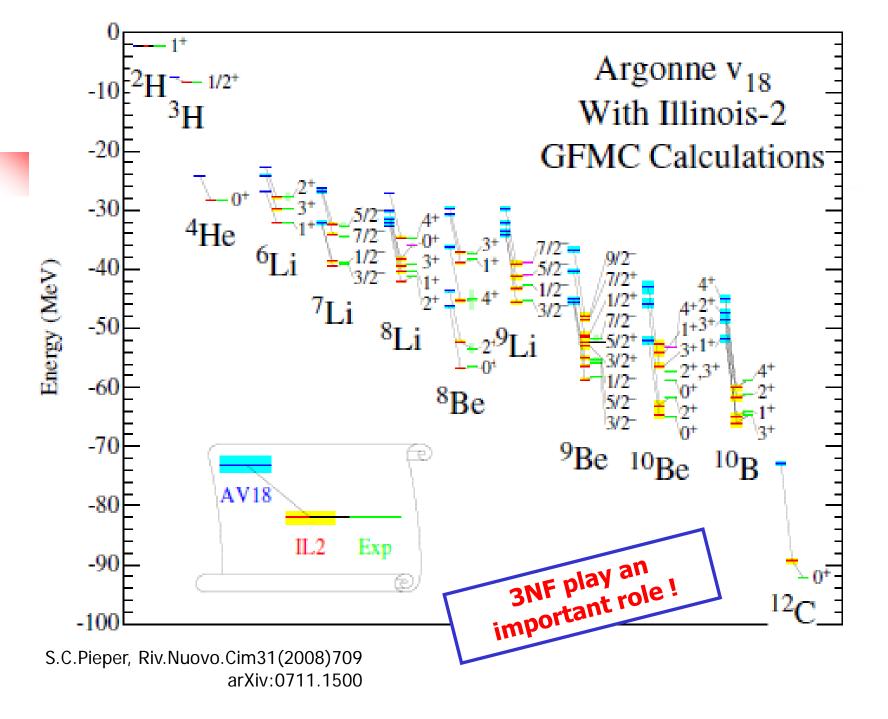
➔ 0.5% prec. for B.E.

H.Kamada et al., PRC64(2001)044001

missing

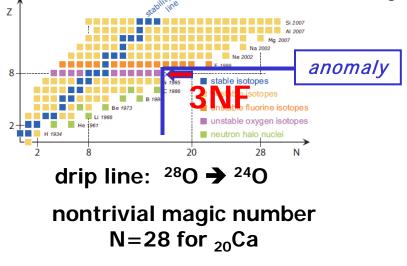
Attractive 3NF

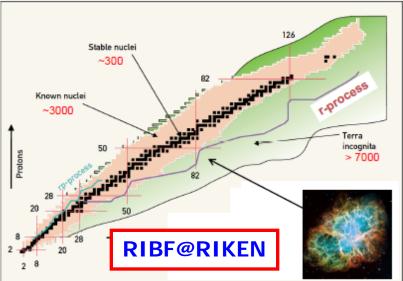

necessary


2N force <u>cannot</u> reproduce B.E.

 $\begin{array}{l} \delta B.E.=~0.5\text{-}1 MeV~for~^3H\\ \delta B.E.=~2\text{-}4 \quad MeV~for~^4He \end{array}$

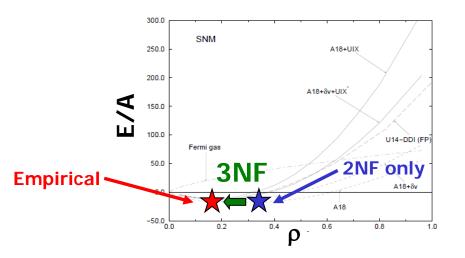
c.f. $\delta B.E.=$ 0.35MeV for 3H in fss2

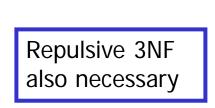


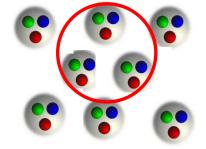

3NF in Neutron-Rich Nuclei

The effect on the nuclear chart

 Anomaly in drip line and nontrivial magic number in neutron-rich nuclei by 3NF______

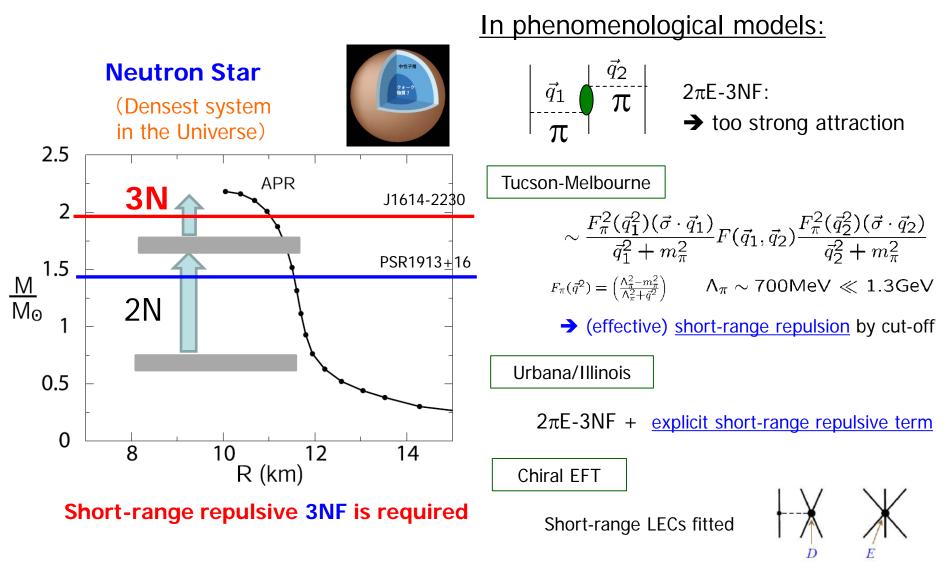

T.Otsuka et al., PRL105(2010)032501 J.D.Holt et al., arXiv:1009.5984




Nucleosynthesis by Supernova

3NF in symmetric nuclear matter

<u>Saturation</u> point of nuclear matter requires 3NF



A.Akmal et al., PRC58(1998)1804

$$\rho_0 = 0.16 \text{ fm}^{-3}$$
 $E/A = 16 \text{ MeV}$

Crucial role of 3NF in nuclear matter

Can we understand it directly from QCD?

EoS of Neutron Stars through Gravitational Waves ?

 Full GR simulation of binary neutron star mergers w/ Shen-EoS (stiff) and Hyperon(Λ)–EoS (soft)

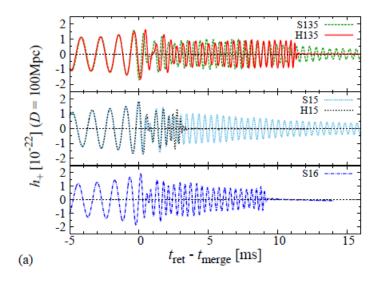
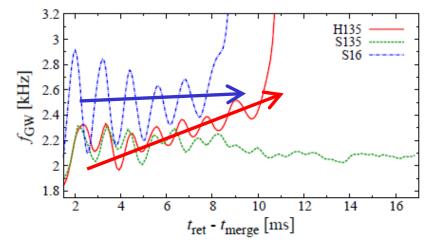
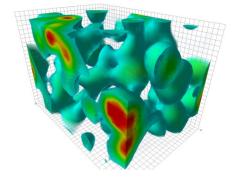
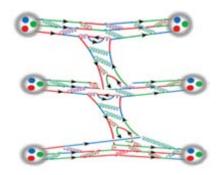
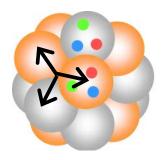


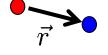
FIG. 4: (a) GWs observed along the axis perpendicular to t D = 100 Mpc. (b) The effective amplitude of GWs defined by noise amplitudes of a broadband configuration of Advanced Las and Large-scale Cryogenic Gravitational wave Telescope (LCGT)

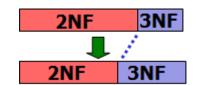

FIG. 5: $f_{\rm GW}(t)$ in the HMNS phase, smoothed by a weighted spline, for H135 (solid red), S135 (dashed green), and S16 (dashed-dotted blue).

Y.Sekiguchi et al., arXiv:1110.4442[astro-ph.HE]

Three Nuclear forces from Lattice QCD



Extension from 2NF -> 3NF


- In the case of 2N system...
 - Calc 4pt func →NBS amp.

 $\psi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}; t) N(\vec{x}; t) | 2N \rangle$

Extension to 3N system

- Calc 6pt func \Rightarrow NBS amp. of 3N $\psi(\vec{r}, \vec{\rho}) = \langle 0 \ N(\vec{x} + \vec{r}) N(\vec{x}) \ N(\vec{x} + \vec{r}/2 + \vec{\rho}) \ 3N \rangle$ Obtain 3NF through $(E - H_0^r - H_0^\rho) \psi(\vec{r}, \vec{\rho}) = \left[\sum_{i < j} V_{ij}(\vec{r}_{ij}) + V_{3NF}(\vec{r}, \vec{\rho}) \right] \psi(\vec{r}, \vec{\rho})$ by 2N calc
- The combination of (2NF, 3NF) → observables
 - → systematic determination by Lat QCD

The Challenges

• (1) S/N issue

 $S/N \sim \exp[-\mathbf{A} \times (\mathbf{m}_{\mathbf{N}} - \mathbf{3}/\mathbf{2m}_{\pi}) \times \mathbf{t}]$

- Use time-dep HAL QCD method

w/ energy-indep potential

 $(\rightarrow$ no ground state saturation is necessary)

• (2) Computational cost issue

Challenges in 3NF calculation

- Enormous computational cost for correlators
 - # of Wick contraction (permutation)

 $N_{\text{perm}} = N_u! \times N_d! \sim \left[\left(\frac{3}{2}A \right)! \right]^2$ for mass number A

(**a factor of 2^A speedup** by inner-baryon exchange)

- # of color / spinor contractions

 $N_{\text{loop}} = 6^A \cdot 4^A$ (**←** a factor of 2^A speedup by "half-spin" method) (color) (spinor) $N = \epsilon_{abc} (q^T C \gamma_5 q) q$

- Total cost:

 $-^{2}H$:

 $-^{3}H$:

 $N_{\rm perm} \times N_{\rm loop}$

9 x $144 = 1 \times 10^3$ $360 \times 1728 = 6 \times 10^5$

 $- {}^{4}\text{He}$: $32400 \times 20736 = 7 \times 10^8$ c.f. T.Yamazaki et al., PRD81(2010)111504 $N_{\rm perm} = 1107$ for ⁴He in the isospin limit

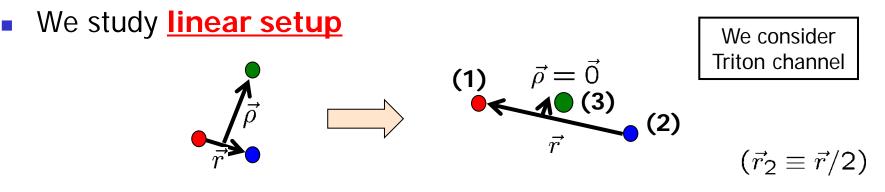
See also TD (HAL QCD Coll.) PoS LAT2010, 136

Solution: Unified contraction algorithm

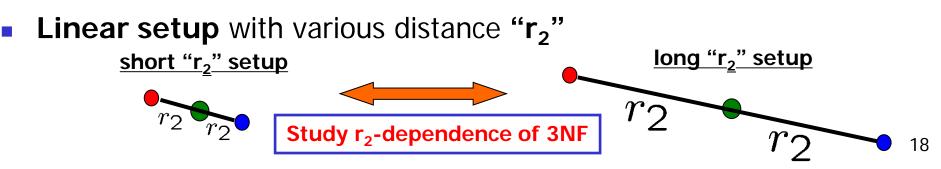
 $\Pi^{2N} \simeq \langle qqqqqq(t)\bar{q}(\xi_1')\bar{q}(\xi_2')\bar{q}(\xi_3')\bar{q}(\xi_3')\bar{q}(\xi_5')\bar{q}(\xi_6')(t_0)\rangle \times \operatorname{Coeff}^{2N}(\xi_1',\cdots,\xi_6')$

- Permutation DONE beforehand

- (Wick contraction and color/spinor contractions are unified)
- Significant improvement

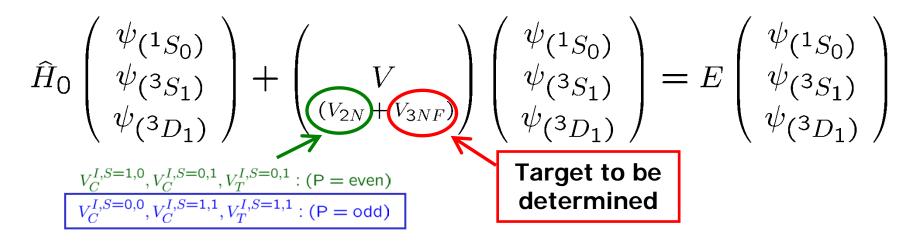

 $\times 192$ for ${}^{3}\text{H}/{}^{3}\text{He}$, $\times 20736$ for ${}^{4}\text{He}$, $\times 10^{11}$ for ${}^{8}\text{Be}$

d) ⁴He 1sec (x add'l. speedup)

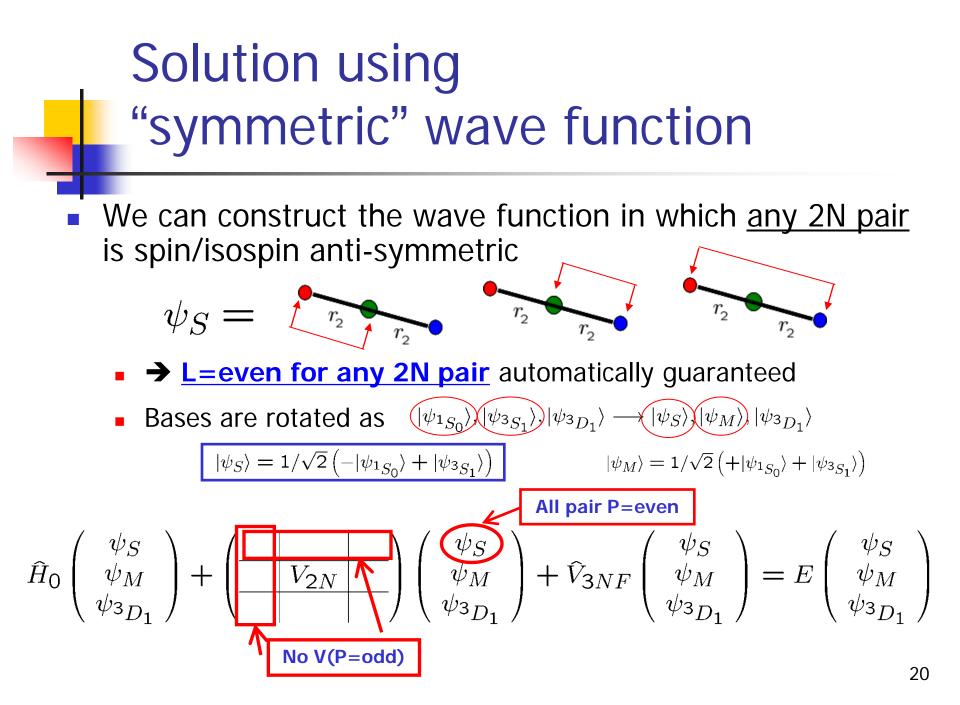

Sum over color/spinor unified list

3NF calculation in Lat QCD

■ We fix the geometry of 3N (← this is not an approximation)



- \rightarrow L^{(1,2)-pair} = L^{total} = 0 or 2 only
- **Bases are only three**, labeled by ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{3}D_{1}$ for (1,2)-pair


Extraction of Genuine 3NF

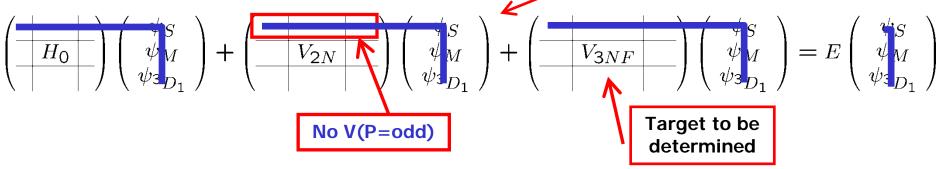
- Genuine 3NF can be extracted from 3x3 coupled channel
 - Both of <u>parity-even 2NF</u> and <u>parity-odd potential</u> required

- S/N : parity-even 2NF > parity-odd 2NF in Lat QCD
 - Desirable to extract 3NF w/ parity-even 2NF only

^{01/25/2013}

Explicit formula for the potential matrix

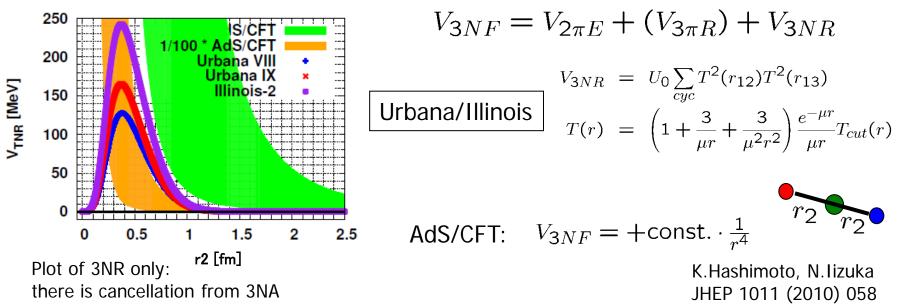
The potential matrix for the 2N part in 3x3 coupled channel in linear setup can be written as:


V _{2N} =	$ \begin{pmatrix} +V_{C}^{10}(r) + V_{C}^{01}(r) \\ +\frac{1}{2}V_{C}^{10}(2r) + \frac{1}{2}V_{C}^{01}(2r) \\ +\frac{1}{2}V_{C}^{10}(r) - \frac{1}{2}V_{C}^{01}(r) \\ -\frac{1}{2}V_{C}^{10}(2r) + \frac{1}{2}V_{C}^{01}(2r) \\ -2V_{T}^{01}(r) \\ +2V_{T}^{01}(2r) \end{pmatrix} $	$\begin{aligned} &+ \frac{3}{4} V_C^{00}(r) + \frac{1}{4} V_C^{10}(r) + \frac{1}{4} V_C^{01}(r) + \frac{3}{4} V_C^{11}(r) \\ &+ \frac{1}{2} V_C^{10}(2r) + \frac{1}{2} V_C^{01}(2r) \end{aligned}$	$-2V_{T}^{01}(r) +2V_{T}^{01}(2r) +V_{T}^{01}(r) - 3V_{T}^{11}(r) +2V_{T}^{01}(2r) +\frac{1}{2}V_{C}^{01}(r) +\frac{3}{2}V_{C}^{11}(r) - V_{T}^{01}(r) - 3V_{T}^{11}(r) +V_{C}^{01}(2r) - 2V_{T}^{01}(2r) - 2V_{T}^{01}(2r) +V_{C}^{01}(2r) +V_{C}^{01}(2r) +V_{T}^{01}(2r) +V_{C}^{01}(2r) +V_{T}^{01}(2r) +V_{T}^{0$			
$V_C^{I,S}$	$V_C^{I,S=1,0}, V_C^{I,S=0,1}, V_T^{I,S=0,1}$: (P = even)					
$V_C^{I,S=0,0}, V_C^{I,S=1,1}, V_T^{I,S=1,1}: (P = odd)$ No V(P=0						
D-terms) $(r_2 \rightarrow r \text{ conver})$						

21

(LO-terms)

Solution using "symmetric" wave function


- We can construct the wave function in which <u>any 2N pair</u> is spin/isospin anti-symmetric
 - → L=even for any 2N pair automatically guaranteed
- 3x3 coupled channel is reduced to
 - one channel with only 3NF unknown
 - two channels with $V_C^{I,S=0,0}$, $V_C^{I,S=1,1}$, $V_T^{I,S=1,1}$, (3NF) unknown

- → Even without parity-odd V, we can determine one 3NF
 - This method works for any fixed 3D-geometry other than linear

Short-Range 3NF

- We determine 3NF effectively represented by a scalar/isoscalar functional form
 - c.f. phenomenological 3NF to reproduce saturation point of nuclear matter, etc.

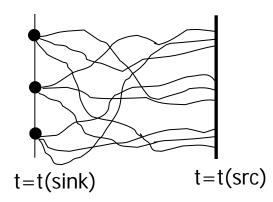
Lattice QCD Calculations

Numerical Setup & Results

BG/L, BG/Q @KEK

T2K@Tsukuba

SR16000 @YITP, KEK

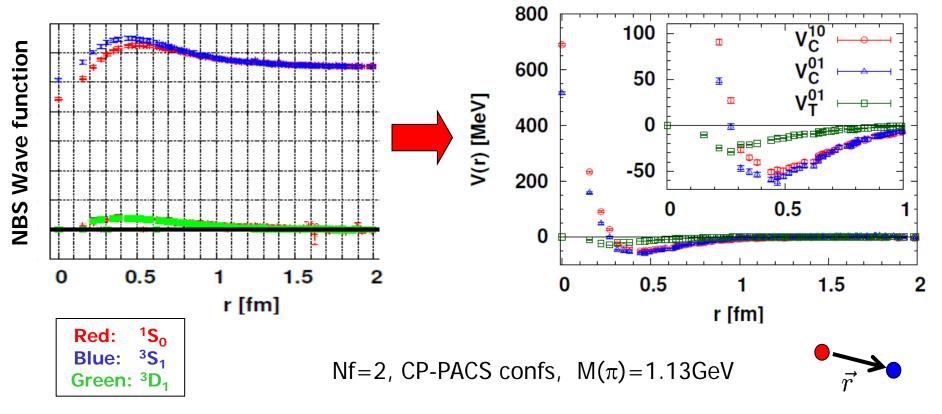

「SR16000 モデル XM1」

Lattice calculation setup

- Nf=2 clover fermion + RG improved gauge action (CP-PACS)
 - 598 configs x 32 measurements
 - beta=1.95, (a⁻¹=1.27GeV, a=0.156fm)
 - 16³ x 32 lattice, L=2.5fm
 - $M(\pi) = 1.13 \text{GeV}$
 - M(N) = 2.15 GeV ($\kappa(ud) = 0.13750$)
 - $M(\Delta) = 2.31 \text{GeV}$

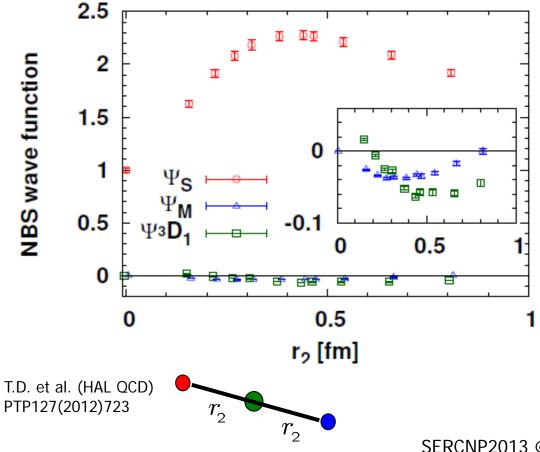
 $(M\pi L = 14)$

CP-PACS Coll. S. Aoki et al., Phys. Rev. D65 (2002) 054505



- Correlators
 - Standard nucleon op to define the wave function / potential at sink $N = \epsilon_{abc} (q_a^T C \gamma_5 q_b) q_c$
 - Non-rela limit op is used to create 3N state at source $G(\vec{r}_2, t-t_0) = \sum_{\vec{x}} \langle 0 | N(\vec{x}+\vec{r}_2, t) N(\vec{x}-\vec{r}_2, t) N(\vec{x}, t) \overline{NNN}(t_0) | 0 \rangle$

See also T.Yamazaki et al., PRD81(2010)111504

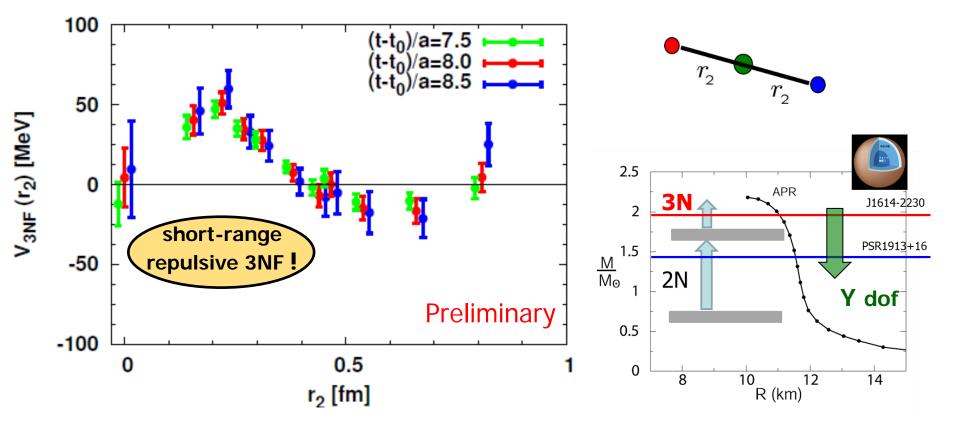

source

2NF (parity-even) from Lat QCD

01/25/2013

Results for wave functions

Ψ_{S} overwhelms the wave function:

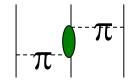

Indication of the dominance of all S-wave component, higher waves suppressed

3N-forces (3NF) on the lattice

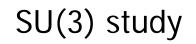
T.D. et al. (HAL QCD Coll.) PTP127(2012)723

+ t-dep method updates

28



Nf=2 clover (CP-PACS), 1/a=1.27GeV, L=2.5fm, m π =1.1GeV, m_N=2.1GeV


How about other geometries ? How about YNN, YYN, YYY ?

What is the origin of Lat 3NF ?

- 2πE-type 3NF (Fujita-Miyazawa) is unlikely
 - Strongly suppressed by $m\pi = 1.13 \text{GeV}$

It may be attributed to quark/gluon dynamics directly
 Recall generalized 2BF in SU(3)f ...

BB potentials

a=0.12 fm, L=3.9 fm,m(PS) = 0.47 - 1.2 GeV

 $V_C \mapsto$

κ_{u,d,s}=0.13840

κ_{u,d,s}=0.13840

3.0

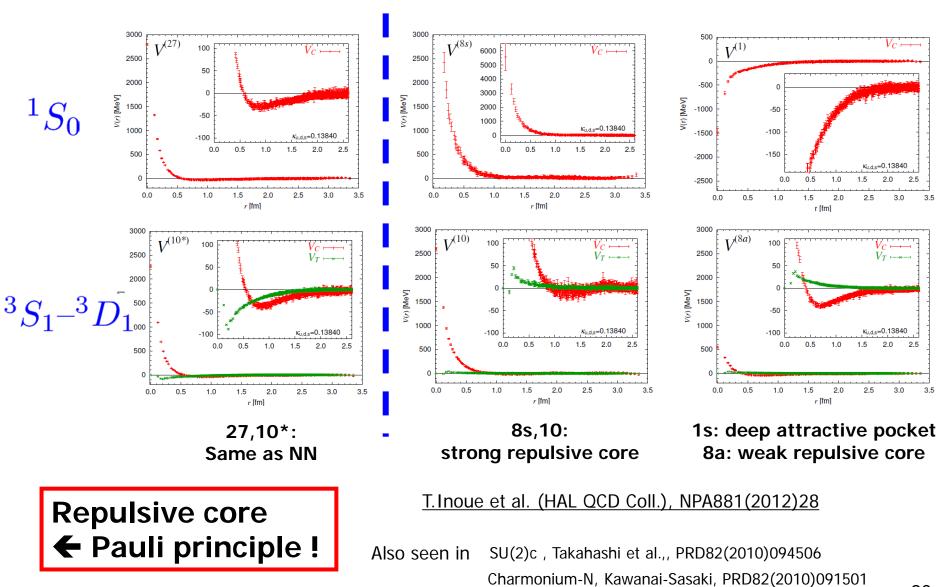
3.5

2.5

3.0

3.5

2.5

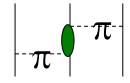

1.0 1.5 2.0 2.5

2.0

1.0 1.5 20 2.5

2.0

Meson-baryon, Y.Ikeda et al., arXiv:1111.2663

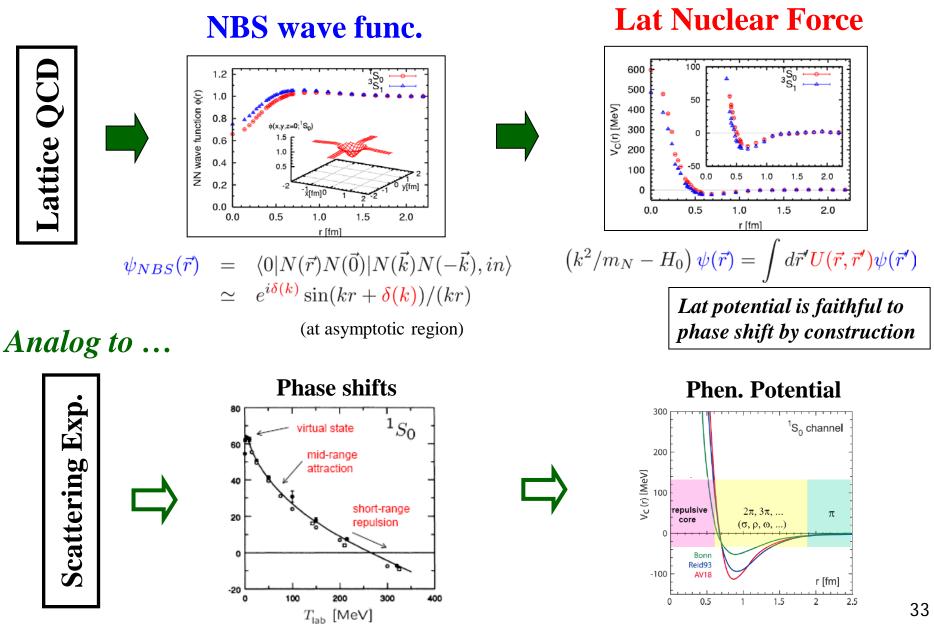


M.Oka et al., NPA464(1987)700

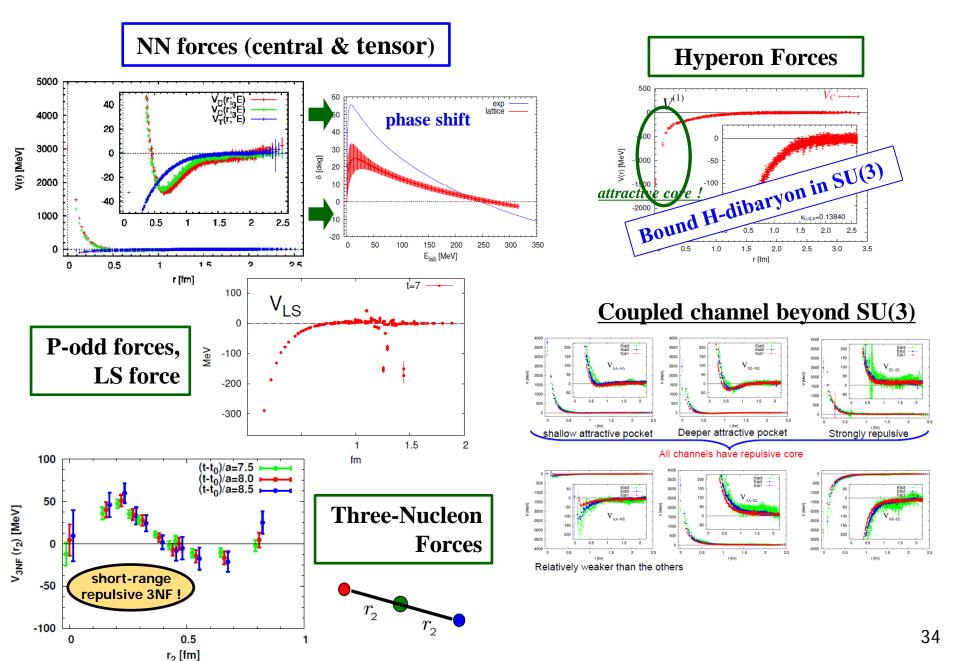
30

What is the origin of Lat 3NF ?

- 2πE-type 3NF (Fujita-Miyazawa) is unlikely
 - Strongly suppressed by $m\pi = 1.13 \text{GeV}$


- It may be attributed to quark/gluon dynamics directly
 - Recall generalized 2BF in SU(3)f ...
 - → Pauli principle works well
 - What will be the Pauli-principle effect in 3NF from a viewpoint of the Quark Model ?
 - c.f. OPE (pert. QCD) predicts repulsive 3NF at short distance

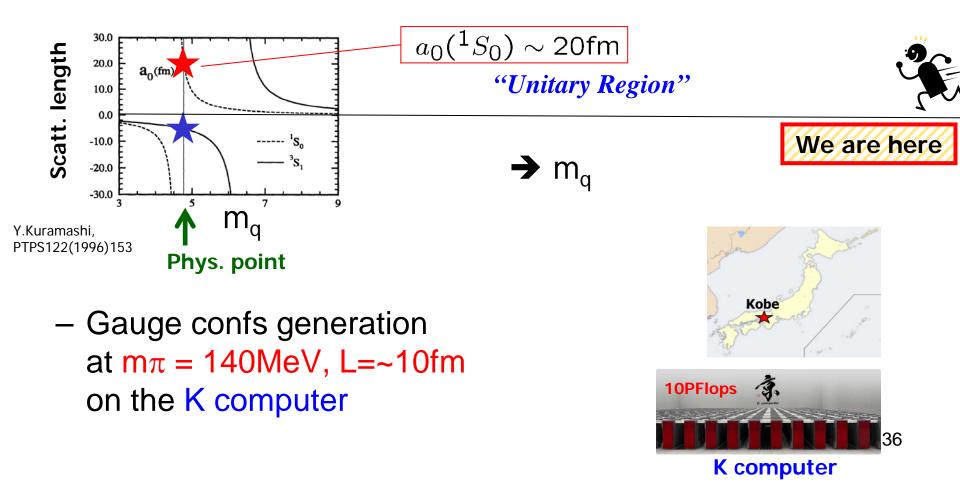
S.Aoki et al., arXiv:1112.2053


01/25/2013

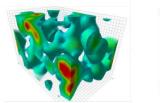
Summary

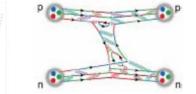
Our Approach [HAL QCD method]

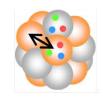
Research Highlight



Future Prospects in Lattice Nuclear Forces


• What is most important next ?


Towards realistic potential on the Lattice


- Physical mass point, Infinite V limit, continuum limit
 - Physical $m\pi$ crucial for OPEP, chiral extrapolation won't work

Summary and Prospects

- Hadron Interactions by 1st principle Lat calc
 - Bridging different worlds:
 Particle Physics / Nuclear Physics / Astrophysics
- Lattice QCD results for NN, YN/YY, NNN
 Intriguing physics even at heavy guark masses
- Next major step: physical quark mass point !
 - Breakthroughs in S/N issue & Comput. cost issue

YOUR new idea Welcome ! Thermodynamic limit & continuum limit

Realistic hadron interactions
 Nuclear Physics on the Lattice !