Hadrons at finite temperature

Sourav Sarkar

Theoretical Physics Division
Variable Energy Cyclotron Centre, Kolkata

Topics

- Chiral symmetry of QCD
- Chiral condensate in the medium
- Vector and axial-vector correlators
- Sum rules in the medium
- Spectral function of the ρ meson

- CBM Physics Book
- H. Leutwyler, hep-ph/0212325
- J. Alam et al Ann. Phys. 286 (2001) 159
- R. Rapp et al Adv. Nucl. Phys. 25 (2000) 1
- S. Leupold et al IJMPE 19 (2010) 147
- R. S. Hayano et al arXiv:0812.1702

QCD Lagrangian

Quantum Chromodynamics(QCD) is the theory of strong interactions

$$\mathcal{L}_{QCD} = \sum_{f=u,d,\cdots} \overline{\psi}_f (i\gamma^{\mu} D_{\mu} - m_f) \psi_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a \; ; \quad f = 1, N_f$$

- $^{\circ}$ covariant derivative $D_{\mu}=\partial_{\mu}-ig_{s}rac{\lambda_{a}}{2}A_{\mu}^{a}$ a=1,8
- gluon field strength tensor

$$G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f^{abc} A^b_\mu A^c_\nu \; ; \quad f^{abc} \to SU(3)_c \; \text{structure constants}$$

• Due to quantum effects (loops) the coupling $\alpha_s=g_s^2/4\pi$ 'runs' with momentum transfer Q

$$\alpha_s(Q) = \frac{12\pi}{(33 - 2N_f)\ln(\frac{Q^2}{\Lambda^2})}$$

Renormalisation introduces the QCD scale parameter, \(\Lambda \simeq 200 \) MeV

'running' coupling

- $\bullet~Q^2\sim\Lambda^2$
 - q's and g's confined within hadrons \Rightarrow degrees of freedom change to π , p, n etc.
 - perturbative QCD does not work
 - Lattice simulation (LQCD)
 - Effective methods based on symmetries of QCD → Chiral symmetry

•
$$Q^2 >> \Lambda^2$$

- q's and g's essentially free
- perturbative region
- QCD well tested in DIS, jet production etc.

- Consider \mathcal{L}_{QCD} for two massless light flavours u and d
- In terms of left and right handed fields $\psi_{R,L}=rac{1}{2}(1\pm\gamma^5)\psi=\left(egin{array}{c}u_{R,L}\d_{R,L}\end{array}
 ight)$

$$\mathcal{L}_{QCD} = i\bar{\psi}_R \gamma^\mu D_\mu \psi_R + i\bar{\psi}_L \gamma^\mu D_\mu \psi_L - \frac{1}{4} G^c_{\mu\nu} G^{\mu\nu}_c$$

• \mathcal{L}_{QCD} is invariant under chiral transformations i.e. separate flavour transformations on left and right components of u and d

$$\psi_R \to U_R \psi_R$$
 $U_R = e^{i\alpha_R^a \tau^a/2} \in SU(2)_R$ $a = 1, 2, 3$
 $\psi_L \to U_L \psi_L$ $U_L = e^{i\alpha_L^a \tau^a/2} \in SU(2)_L$

• Under this global $SU(2)_R \times SU(2)_L$ symmetry, the conserved currents are

$$j_R^{\mu \ a} = \bar{\psi}_R \gamma^{\mu} \frac{\tau_a}{2} \psi_R \quad \& \quad j_L^{\mu \ a} = \bar{\psi}_L \gamma^{\mu} \frac{\tau_a}{2} \psi_L \quad \text{with} \quad \partial_{\mu} j_R^{\mu \ a} = \partial_{\mu} j_L^{\mu \ a} = 0$$

- Thus chiral symmetry of $\mathcal{L}_{QCD} \Rightarrow$ left and right handed quarks do not communicate \Rightarrow 'handedness' is preserved in dynamical processes
- A mass term ' $m_f(\bar{\psi}_R\psi_L+\bar{\psi}_L\psi_R)$ ' allows for $L\leftrightarrow R$ transitions; chiral limit $\Rightarrow m_f=0$
- chiral currents can be expressed in terms of conserved vector and axialvector currents

$$j_V^{\mu \ a} = j_R^{\mu \ a} + j_L^{\mu \ a} = \bar{\psi} \gamma^{\mu} \frac{\tau_a}{2} \psi$$

$$j_A^{\mu \ a} = j_R^{\mu \ a} - j_L^{\mu \ a} = \bar{\psi} \gamma^{\mu} \gamma^5 \frac{\tau_a}{2} \psi$$

• The corresponding charges generate the algebra of $SU(2)_V$ and $SU(2)_A$

$$Q_V^a = \int d^3x \, j_V^{0\,a}(x)$$
 and $Q_A^a = \int d^3x \, j_A^{0\,a}(x)$

They commute with the QCD Hamiltonian

$$[Q_V^a, H_{QCD}^{m_f=0}] = 0$$
 and $[Q_A^a, H_{QCD}^{m_f=0}] = 0$

- So \mathcal{L}_{QCD} in the limit of massless quarks has global chiral symmetry What about the vacuum (ground state) of QCD?
- Essential criteria for a symmetry to be realised in terms of degenerate multiplets is:

```
U_{sym}|0\rangle = |0\rangle ground state is invariant under symmetry transformation Q_{sym}|0\rangle = 0 symmetry charges annihilate the vacuum
```

- This is the (normal) Wigner-Weyl mode of realisation of symmetry
- But for the three axial charges, we can have two possibilities

- (a) $Q_A^a |0\rangle = 0$
- → unique vacuum
- degenerate multiplets of opposite parity
- (b) $Q_A^a|0\rangle \neq 0$
- degenerate vacua
- massless pseudoscalars → Goldstone bosons
- spontaneously broken symmetry

- We observe :
 - ono degenerate parity partners ($\sim 600~{\rm MeV}$ difference in mass) $m_{\rho}[J^P=1^-]=770~{\rm MeV}/m_{a_1}[J^P=1^+]=1260~{\rm MeV}$ $m_N[J^P=1/2^+]=940~{\rm MeV}/m_N^*[J^P=1/2^-]=1535~{\rm MeV}$ etc.
 - triplet of 'light' pions ⇒ Goldstone bosons
- Assume : $SU(2)_R \times SU(2)_L$ sp. broken to $SU(2)_V$

Chiral condensate

- For any operator P, if $\langle 0|[Q,P]|0\rangle \neq 0$, this expectation value is an order parameter
- $\bullet \quad \text{with } P^b = \bar{\psi} \gamma^5 \tau^b \psi, \quad \left[Q^a_A, P^b \right] = \delta^{ab} \bar{\psi} \psi$
- $Q^a_A|0\rangle \neq 0$ implies $\langle 0|[Q^a_A,P^b]|0\rangle \rightarrow \langle 0|\bar{\psi}\psi|0\rangle \neq 0$ \Longrightarrow chiral condensate is an order parameter for chiral symmetry breaking
- lacktriangle In addition, there is an explicit breaking due to $m_u, m_d
 eq 0$
- The symmetry breaking parameters are related to the pion mass through Gell Mann-Oaks-Renner (GOR) relation

$$m_{\pi}^{2} F_{\pi}^{2} = -(m_{u} + m_{d})\langle 0|\bar{\psi}\psi|0\rangle + O(m_{u,d}^{2})$$

in the chiral limit ($m_{u,d}=0$) $m_{\pi}=0$

• For $F_{\pi}=93$ MeV (from $\pi^{+}\to\mu^{+}\nu_{\mu}$ decay) $\langle 0|\bar{\psi}\psi|0\rangle\sim-(250~{\rm MeV})^{3}$

Chiral condensate in the medium

- How does the chiral condensate change in a hot/dense medium e.g. in Relativistic Heavy Ion Collisions?
- A first estimate can be obtained from linear density expansions
- approximate the thermal medium by non-interacting light hadrons; pions at finite T and nucleons at finite μ_B

$$\langle \mathcal{O} \rangle = \langle 0|\mathcal{O}|0\rangle + \int \frac{d^3p}{(2\pi)^3 2p_0} n_{\pi} \langle \pi|\mathcal{O}|\pi\rangle + \int_0^{p_F} \frac{d^3p}{(2\pi)^3 2p_0} \langle N|\mathcal{O}|N\rangle + \cdots$$

- ^ At lowest order $\langle \bar{\psi}\psi\rangle \simeq \langle 0|\bar{\psi}\psi|0\rangle \left(1-\frac{T^2}{8F_\pi^2}-\frac{\rho_N}{3\rho_0}\right)$ for $m_\pi=0$ (chiral limit)
- $^{\circ}$ this naive estimate predicts chiral symmetry restoration at $T\sim 250$ MeV and/or $\rho_N\sim 3\rho_0$

Chiral condensate in medium

- The pion decay constant F_{π} is also an order parameter for chiral phase transition
- in pionic medium $F_{\pi}(T) = F_{\pi}\left(1 \frac{T^2}{12F_{\pi}^2}\right) \Rightarrow$ also decreases with T
- Lattice simulations of QCD thermodynamics:

$$\langle \bar{\psi}\psi \rangle_T \sim \frac{\partial P(T,V)}{\partial m_q}$$
 where $P = T \frac{\partial}{\partial V} \ln \mathcal{Z}$

- The chiral condensate shows a rapid drop in the transition region
 - $^{\circ}$ For $T > T_c$, the condensate eventually disappears \Longrightarrow chiral symmetry is realised in the Wigner-Weyl mode
 - For three quark flavours the chiral transition is expected to be of second order

A. Bazavov et al PRD80 (2009) 014504

Current Correlators

- The chiral condensate is not an experimentally measurable quantity
- Current correlators provide an useful framework to connect QCD with observables (hadrons)
- These are expectation values of two-point functions of (local) currents
- Consider the correlators of vector currents (j_V^{μ}) and axial-vector currents (j_A^{μ}) of QCD

$$\Pi_V^{\mu\nu}(q) = i \int d^4x e^{iq\cdot x} \langle 0|Tj_V^{\mu}(x)j_V^{\nu}(0)|0\rangle$$

$$\Pi_A^{\mu\nu}(q) = i \int d^4x e^{iq\cdot x} \langle 0|Tj_A^{\mu}(x)j_A^{\nu}(0)|0\rangle$$

- ImΠ contains the spectral information → spectral density
- The currents (j^{μ}) couple to individual hadrons as well as multi-particle states with the same q. nos. \Rightarrow spectral densities contain peak and continuum structure

Current Correlators in vacuum

- The V and A correlators are identical to all orders in perturbation theory

 Chiral symmetry implies: ${\rm Im}\Pi_V(q)={\rm Im}\Pi_A(q)$
- ${\rm Im}\Pi_V$ and ${\rm Im}\Pi_A$ have been measured at LEP in au decays into even and odd number of pions $[au o
 u_ au + n\pi]$ by ALEPH and OPAL Collaborations
- the quantum numbers of \vec{j}_V^μ [$I^G(J^P)=1^+(1^-)$] and \vec{j}_A^μ [$I^G(J^P)=1^-(1^+)$] coincide with those of ρ and a_1 mesons peaks dominate at low q^2
- very different spectral shape ⇒ broken chiral symmetry in vacuum

EPJC 7 (1999) 571

Current Correlators in medium

- In the strongly interacting medium the spectral density may change;
 peaks could become broader and pole positions may shift
- $Im\Pi_V$ is accessible through EM probes in particular, the dilepton spectra from heavy ion collisions
- However, it is difficult to measure ${\rm Im}\Pi_A$ in the medium \Rightarrow final state interactions would modify the signal in the $\pi^\pm\gamma$ or 3π invariant mass spectra
- Since a simultaneous measurement does not appear to be feasible it is essential to put constraints on spectral densities
- QCD Sum Rules are useful for this purpose
- In addition, spectral densities can be related to chiral order parameters through Weinberg Sum Rules

QCD Sum Rules

- Hadron properties can be obtained in terms of QCD parameters through
 QCD Sum Rules
 M. Shifman et al NPB 147 (1979) 385
- Using analyticity a dispersion relation is written for the correlation function

$$\Pi(q) = \frac{1}{\pi} \int \frac{\text{Im}\Pi^{had}(s)}{(s - q^2)} ds + \text{subtractions}$$

- $\Pi(q)$ is also obtained using Operator Product Expansion (for $Q^2=-q^2>>0$)
- Matching the two expressions of $\Pi(q)$ for large space-like momenta \Rightarrow Sum Rules
- In OPE, the correlator is expanded in terms of local operators composed of quark and gluon fields of increasing dimension

$$i \int d^4x e^{iq \cdot x} T[j(x)j(0)] \xrightarrow{large Q^2} C_1 I + \sum_n C_n(q) \mathcal{O}_n$$

• $C_n o$ Wilson coefficients (can be found by taking appropriate matrix elements on both sides)

QCD Sum Rules

- The coefficients C_n fall off as powers of $1/Q^2 \Longrightarrow$ lower dimensional operators e.g. $m_q \bar{\psi} \psi$, $G_{\mu\nu} G^{\mu\nu}$, $\bar{\psi} \Gamma \psi \bar{\psi} \Gamma \psi$ dominate the sum rule
- expectation values of these operators provide non-perturbative contributions
- Parametrize the vector spectral density as

$$\operatorname{Im}\Pi_{V}(s) = 2\pi m_{\rho}^{2} F_{\rho}^{2} \delta(s - m_{\rho}^{2}) + \frac{1}{4\pi} \left(1 + \frac{\alpha_{s}}{\pi}\right) \theta(s - s_{th})$$
pole + continuum

Vacuum Sum Rule

$$m_{\rho}^{2} F_{\rho}^{2} e^{-m_{\rho}^{2}/M^{2}} - \frac{M^{2}}{8\pi^{2}} \left(1 + \frac{\alpha_{s}}{\pi} \right) \left(1 - e^{-s_{th}/M^{2}} \right)$$

$$= \langle 0 | m \overline{\psi} \psi | 0 \rangle + \langle 0 | \frac{\alpha_{s}}{\pi} G_{\mu\nu} G^{\mu\nu} | 0 \rangle - \frac{56\alpha_{s}}{81M^{2}} \langle 0 | 4 \text{ quark} | 0 \rangle + \cdots$$

• At $T \neq 0$ there are additional considerations for both the spectral and OPE sides

In-medium correlators (spectral side)

- Lorentz invariance is not manifest due to existence of a preferred frame $\Rightarrow \Pi^{\mu\nu}$ become functions of q_0 and \vec{q} separately instead of q^2
- restored by introducing u_{μ} (the four-velocity of the medium) $\Rightarrow q_0$ and \vec{q} can be defined in terms of two scalars $\omega = u \cdot q$ [= q_0 in the rest frame with $u_{\mu} = (1,0,0,0)$] $\overline{q} = \sqrt{\omega^2 q^2}$ [= $|\vec{q}|$ in rest frame]
- For $\vec{q} \neq 0$ the correlation function splits into longitudinal and transverse components

$$\Pi^{\mu\nu}(q_0, \vec{q}) = P^{\mu\nu}\Pi_T(q_0, \vec{q}) + Q^{\mu\nu}\Pi_L(q_0, \vec{q})$$

where $P^{\mu\nu}$ and $Q^{\mu\nu}$ are the corresponding projection tensors

 So, in the medium we have two components of the correlation function, each a function of two variables

Thermal QCD Sum Rules

- Additional scalar operators emerge from tensors by contracting with the velocity vector u_{μ} e.g. $u^{\mu}\Theta_{\mu\nu}u^{\nu}$ where $\Theta_{\mu\nu}$ is the stress tensor of QCD
- The vacuum condensates to be replaced by in-medium ones $\langle 0|\mathcal{O}|0\rangle \longrightarrow \langle \mathcal{O}\rangle_T = Tr[e^{-\beta H}\mathcal{O}]/Tr[e^{-\beta H}]$
- one gets two sum rules; longitudinal and transverse
- S. Mallik et al PRD58, 096011

$$F_{\rho}^{2}(T)e^{-m_{\rho}^{2}(T)/M^{2}} + I_{L}(M^{2}) = \frac{M^{2}}{8\pi^{2}} + \frac{\langle O \rangle_{T}}{M^{2}}$$

$$m_{\rho}^{2}(T)F_{\rho}^{2}(T)e^{-m_{\rho}^{2}(T)/M^{2}} + I_{T}(M^{2}) = \frac{M^{4}}{8\pi^{2}} - \langle O \rangle_{T}$$

$$\langle \mathcal{O} \rangle_T = m \langle \overline{\psi} \psi \rangle_T + \frac{\langle G^2 \rangle_T}{24} + \langle \text{new operators} \rangle$$

 calculate the spectral density from an effective theory and use sum rules to constrain parameters

Weinberg Sum Rules

 The difference of the vector and axial vector spectral densities are quantified by the Weinberg Sum Rules

$$\int \frac{ds}{s\pi} [\operatorname{Im}\Pi^{V}(s) - \operatorname{Im}\Pi^{A}(s)] = F_{\pi}^{2}$$

$$\int \frac{ds}{\pi} [\operatorname{Im}\Pi^{V}(s) - \operatorname{Im}\Pi^{A}(s)] = 0$$

$$\int \frac{sds}{\pi} [\operatorname{Im}\Pi^{V}(s) - \operatorname{Im}\Pi^{A}(s)] = 2\pi\langle 0|4 \operatorname{quark}|0\rangle$$

- In thermal medium
 - $^{\circ}$ The integrals become energy (q_0) integrals
 - $^{\circ}$ each sum rule applies for a fixed 3-momentum (\vec{q}) and must be obeyed at each value of the momentum
 - $^{\circ}$ the spectral densities split into T and L modes
 - Constrains both energy and momentum dependence of in-medium spectral densities

Correlators & chiral symmetry restoration

- Possible scenarios of approach to chiral symmetry restoration based on Weinberg Sum Rules at $T \neq 0$ J.I.Kapusta & E. Shuryak, PRD49 (1994) 4694
 - $^{\circ}$ Thermal pions induce mixing of V and A correlators. To lowest order

$$\operatorname{Im}\Pi_{V}(T) = [1 - \epsilon(T)] \operatorname{Im}\Pi_{V}^{vac} + \epsilon(T) \operatorname{Im}\Pi_{A}^{vac} \qquad \epsilon = \frac{T^{2}}{6F_{\pi}^{2}}$$
$$\operatorname{Im}\Pi_{A}(T) = [1 - \epsilon(T)] \operatorname{Im}\Pi_{A}^{vac} + \epsilon(T) \operatorname{Im}\Pi_{V}^{vac}$$

Maximal mixing
$$\Rightarrow$$
 CSR for $\epsilon = \frac{1}{2} \Rightarrow T_c \sim 164$ MeV

- $^{\circ}$ The peak positions of ${
 m Im}\Pi_V$ and ${
 m Im}\Pi_A$ may change with T \Rightarrow masses may shift towards each other or go to zero and become degenerate at T_c
- Close to T_c the self energy of hadrons may increase and resonance structure may become broad and merge with the continuum \Rightarrow a flat spectral shape in both cases
- The sum rules by themselves cannot indicate the preferred scenario

Detecting in-medium correlators

- Approach to CSR involves a reshaping of one or both correlators
- A simultaneous measurement of $\overline{\text{Im}\Pi}_V$ and $\overline{\text{Im}\Pi}_A$ is the best way to study CSR.
- lacktriangle not possible due to difficulties in measurement of ${
 m Im}\Pi_A$
- Consideration of indirect approaches:
 - $^{\circ}$ Theoretical calculation of $\mathrm{Im}\Pi_{V}$ and $\mathrm{Im}\Pi_{A}$ correlators involving detailed consideration of many-body effects in a thermal field theoretical framework based on chiral effective interactions
 - $^{\circ}$ Using $\operatorname{Im}\Pi_{V}$ to evaluate dilepton spectra and compare with data
 - Using the V and A correlators in WSRs to obtain the temperature dependence of order parameters e.g. F_{π} and 4-quark condensate and compare with LQCD results for those

Dilepton emission rate

Dilepton emission rate is given by the thermal expectation value of the correlator of
 EM currents
 McLerran & Toimela PRD (1985)

$$\frac{dN_{l^{+}l^{-}}}{d^{4}x d^{4}q} = -\frac{\alpha^{2}}{3\pi^{3} q^{2}} \frac{g^{\mu\nu}}{e^{\beta q_{0}} + 1} \operatorname{Im} W_{\mu\nu}(q)
W_{\mu\nu}(q) = \int d^{4}x e^{iq \cdot x} \langle T J_{\mu}^{em}(x) J_{\nu}^{em}(0) \rangle_{T} \qquad J_{\mu}^{em} = \sum_{f} e_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f}$$

• At low invariant mass M, EM current is decomposed into vector currents

$$J_{\mu}^{em} = J_{\mu}^{\rho} + J_{\mu}^{\omega} + \cdots$$
$$I = 1 \qquad I = 0$$

• Vector currents converted to vector meson fields (VMD) e.g. $J_{\mu}^{\rho}=F_{\rho}m_{\rho}\rho_{\mu}$

$$\operatorname{Im} W^{\mu\nu} \longrightarrow \sum_{V=\rho,\omega,\phi} \operatorname{Im} \Pi_V^{\mu\nu} \longrightarrow \sum_{V=\rho,\omega,\phi} \operatorname{Im} D_V^{\mu\nu}$$

• the essential quantity is the imaginary part of the in-medium vector propagator D_V

ρ spectral function

The full propagator is obtained through a Dyson equation

$$D = D^{0} + D^{0}\Sigma D^{0} + D^{0}\Sigma D^{0}\Sigma D^{0} + \cdots$$
$$= \frac{D^{0}}{1 + \Sigma D^{0}} = \frac{1}{p^{2} - m^{2} + \Sigma}$$

spectral function

$$A = \operatorname{Im} D = \frac{\operatorname{Im} \Sigma}{(p^2 - m^2 + \operatorname{Re} \Sigma)^2 + (\operatorname{Im} \Sigma)^2}$$

- Real part gives pole shift & Imaginary part leads to broadening
- $\begin{array}{ll} \bullet & \text{For } \rho \text{ meson (spin 1)} & \Sigma^{\mu\nu} = P^{\mu\nu}\Sigma_t + Q^{\mu\nu}\Sigma_l \\ & \text{from which we get} & \Sigma_l = \frac{\Sigma^{00}}{\vec{q}^2} \quad \text{and} \quad \Sigma_t = -\frac{1}{2}(\Sigma^\mu_\mu + q^2\Sigma_l) \end{array}$
- Spin averaged spectral function: $A_{\rho} = \frac{1}{3}[2A_{\rho}^t + A_{\rho}^l]$

ρ self energy

- Essential quantity to find is the ρ self-energy Σ_{ρ} in the medium
 - Linear density approximation

$$\Sigma_{\rho}(q) = \sum_{h} \int \frac{d^{3}p}{(2\pi)^{3}} f_{h}(p) T_{h\rho}(p,q) \to \sum_{h} n_{h} T_{h\rho}$$

 $T_{h\rho} \rightarrow$ forward scattering amplitude ($h = \pi, N$)

Eletsky et al PRC (2001)

- Field Theoretic approach using chiral effective interactions
 - Massive Yang-Mills

Song et al PRD (1996)

Hidden Local Symmetry

Bando et al PRL (1985)

 Chiral Perturbation Theory with massive spin-1 fields

Ecker et al PLB (1989)

These approaches start with chiral pion Lagrangians and introduce vector meson fields through 'gauging'

Chiral effective theory (pions)

- The low energy effective theory of QCD is constructed in terms of fields of observed particles by utilizing the underlying chiral symmetry
- First determine how Goldstone and non-Goldstone fields transform under chiral transformations
- All terms built out of the observed fields and invariant under these transformation rules form a piece in \mathcal{L}_{eff}
- The Goldstone bosons (pions) are collected in a matrix $U(x) = exp[i\tau_a\pi_a(x)/F_\pi]$ which transforms as

$$U'(x) = g_R U(x) g_L^{\dagger}$$
 $g_{R,L} \in SU(2)_{R,L}$

- $\mathcal{L}_{eff} = \mathcal{L}_{eff}(U, \partial U, \partial^2 U \cdots)$ ordered in increasing number of derivatives of U(x)
- lacktriangle The leading term involves two derivatives in U

$$\mathcal{L}_{eff}^{(2)} = \frac{F_{\pi}^2}{4} Tr[\partial_{\mu} U^{\dagger} \partial^{\mu} U]$$

H. Leutwyler, arXiv:hep-ph/9409422

Chiral effective theory

- The pion mass term due to explicit symmetry breaking is included as a perturbation
- $\Longrightarrow \mathcal{L}_{eff}$ is an expansion in powers of momenta and mass of the pions (ChPT)
- Non-Goldstone fields e.g. the triplet of ρ fields transform as

$$\rho'_{\mu} = h \rho_{\mu} h^{\dagger} \qquad h \in SU(2)_{V}$$

- Interaction terms are introduced through field combinations invariant under appropriate representations of the symmetry transformations
- The lowest order interaction involving the ρ , π , ω etc

$$\mathcal{L}_{int} = -\frac{2G_{\rho}}{m_{\rho}F_{\pi}^{2}}\partial_{\mu}\vec{\rho}_{\nu}\cdot\partial^{\mu}\vec{\pi}\times\partial^{\nu}\vec{\pi}$$

$$+\frac{g_{1}}{F_{\pi}}\epsilon_{\mu\nu\lambda\sigma}(\partial^{\nu}\omega^{\mu}\vec{\rho}^{\lambda}-\omega^{\mu}\partial^{\nu}\vec{\rho}^{\lambda})\cdot\partial^{\sigma}\vec{\pi}$$

$$+\frac{g_{2}}{F_{\pi}}(\partial_{\mu}\vec{\rho}_{\nu}-\partial_{\nu}\vec{\rho}_{\mu})\cdot\vec{a}_{1}^{\mu}\times\partial^{\nu}\vec{\pi}$$

ρ self-energy (mesons)

The one-loop self energy (in vacuum) is given by

$$\Sigma_{\mu\nu}(E,q) = i \int \frac{d^4k}{(2\pi)^4} N_{\mu\nu} D_{\pi}(k) D_h(q-k)$$

$$D(k) = \frac{1}{k^2 - m^2 + i\epsilon}$$

- To be evaluated in the medium using Thermal Field Theory
- Imaginary Time Formalism

T. Matsubara, PTP 14 (1955) 351

$$^{\circ}$$
 replace propagators by $\dfrac{1}{\omega_n^2 + ec{k}^2 + m^2}$ with $\omega_n = \dfrac{2n\pi}{eta}$

$$^{\circ}$$
 replace $\int \frac{d^4k}{(2\pi)^4}$ by $\frac{1}{\beta} \sum_n \int \frac{d^3k}{(2\pi)^3}$ Matsubara sum

 $^{\circ}$ self-energy $\Sigma_{\mu\nu}$ obtained for discrete (imaginary) values of energy \rightarrow analytically continued to real continuous values

ρ self-energy

Real Time Formalism

R.L.Kobes & G. Semenoff, NPB260 (1985) 714

- $^{\circ}$ propagator D and self energy Σ become 2×2 matrices
- They can be diagonalised in terms of analytic functions
- $^{\circ}$ The (diagonal) self-energy function $\overline{\Sigma}$ corresponds to the (continued) ITF result
- $^{\circ}$ can be obtained from the 11-component Σ^{11}

$$\operatorname{Im}\overline{\Sigma} = \tanh(\beta q_0/2)\operatorname{Im}\Sigma^{11}$$

$$Re\overline{\Sigma} = Re\Sigma^{11}$$

$$\Sigma_{\mu\nu}^{11}(E,q) = i \int \frac{d^4k}{(2\pi)^4} N_{\mu\nu} D_{\pi}^{11}(k) \ D_h^{11}(q-k)$$

ρ self-energy

- Discontinuities in $\overline{\Sigma} \Longrightarrow$ imaginary part
- Two regions (cuts) for E>0 and $q^2>0$

$$\operatorname{Im}\overline{\Sigma}(E,\vec{q}) = -\pi \int \frac{d^3\vec{k}}{(2\pi)^3 4\omega_\pi \omega_h} \times$$

$$\left[N_1[(1+n_\pi)(1+n_h) - n_h n_\pi] \delta(E - \omega_\pi - \omega_h) + N_2[n_\pi(1+n_h) - n_h(1+n_\pi))] \delta(E + \omega_\pi - \omega_h) \right]$$

- δ -functions define non-zero regions \Rightarrow physical processes contributing to loss or gain of ρ mesons in the medium
- Real part obtained from dispersion integral: $\operatorname{Re}\overline{\Sigma}(E,\vec{q}) = \mathcal{P} \int_0^\infty \frac{d\omega^2}{\pi} \frac{\operatorname{Im}\overline{\Sigma}(\omega,\vec{q})}{\omega^2 E^2}$

ρ self energy

 \bullet contribution from $\pi-\pi$ loop to real and imaginary parts

ullet additional contributions from the $\pi-\omega$, $\pi-h_1$ and $\pi-a_1$ loops

S. Ghosh et al EPJC 70 (2010) 251

Spectral Function

• For a hot meson gas, with $h = \pi, \omega, h_1, a_1$ mesons

• The ρ spectral function (for $|\vec{q}|=300$ MeV) shows sizeable broadening with small mass shift

S. Ghosh et al arXiv:1009.1260

Dilepton rate (ρ only)

• The individual contributions from the Landau and unitary cuts from the $\pi-\pi$, $\pi-\omega$, $\pi-a_1$ self-energies

Dilepton rate (ρ only)

- Enhancement in the low mass dilepton rate due to spectral changes
- broadening in low mass region due to scattering processes involving heavy mesons
 - ⇒ Landau cut contributions

details in Sabyasachi's talk on 8th

Baryon Loops

- Baryon contribution is included through RN loops
- $R \equiv \Delta(1232), N^*(1520), \Delta(1650), N^*(1700)$ etc.
- The $\Delta N \rho$ interaction e.g.

$$\mathcal{L}_{int} = \frac{g}{F_{\pi}} \bar{\psi}^{\mu}_{\Delta} \gamma^{\nu} \psi_{N} \rho_{\mu\nu} \qquad J^{P} = \frac{3}{2}^{+}$$

• The relevant part comes the Landau-type discontinuity in the domain E>0 and $q^2>0$

$$\operatorname{Im}\overline{\Sigma}(E,\vec{q}) = -\pi \int \frac{d^3\vec{k}}{(2\pi)^3 4\omega_N \omega_R} \left[(N_1 n_+^R + N_2 n_-^R) - (N_3 n_+^N + N_4 n_-^N) \right] \delta(E + \omega_N - \omega_R)$$

where
$$n_+=rac{1}{e^{eta(E-\mu)}+1} o$$
 baryons and $n_-=rac{1}{e^{eta(E+\mu)}+1} o$ anti-baryons

Contributes even at $ho_N=0$ because contributions from baryons and anti-baryons appear additively

ρ spectral function in dense matter at T=0

D. Cabrera et al NPA 705 (2002) 90

- rho spectral function in dense matter at $\rho=0,\, \rho=\rho_0/2$ and $\rho=\rho_0$ in a chiral approach involving $\Delta(1230)$ and $N^*(1520)$
- $^{\bullet}$ New structure at low mass from Landau-type discontinuities in the $N^{*}(1520)-N$ self-energy

ρ spectral fn in hot & dense matter

R. Rapp et al arXiv:0901.3289

- rho spectral function in hot and dense matter calculated in a many-body approach involving mesons and baryons
- substantial broadening \Rightarrow melting of ρ

Dilepton spectra

- More work needs to be done to obtain the low mass dilepton yield to be compared with experimental data
 - In addition to the ρ , the in-medium spectral functions of the ω and possibly ϕ are required for the rate of emission from hadronic matter
 - rate of emission from QGP
 - convolution over the space-time history of the fireball using relativistic hydrodynamics
 - a realistic equation of state
 - implementation of chemical and kinetic freeze-out
 - fold over the Acceptance function of the detector, if any

More on this in Jan-e Alam's talk on 9th

Concluding remarks

- The study of hadrons in medium provides a handle to study non-perturbative phenomena like chiral phase transition in QCD
- However, we should keep in mind that not every in-medium change in the properties of hadrons is related to chiral symmetry restoration
- change due to purely hadronic many body effects like scattering and decay in the medium
- It is not sensible to try to determine what part of the medium effect has a 'conventional' origin and how much is related to chiral symmetry breaking/restoration
- Essential to carefully and exhaustively evaluate the in-medium correlation functions with chiral effective interactions in a Quantum Field Theoretic framework
- This needs to be corroborated with LQCD simulations as well as constraints coming from the sum rules

Real Time Formalism

The free propagator

$$D^{11} = -(D^{22})^* = \Delta(k_0, \vec{k}) + 2\pi i n \delta(k^2 - m^2)$$
$$D^{12} = D^{21} = 2\pi i \sqrt{n(1+n)} \delta(k^2 - m^2)$$

where
$$\Delta(k_0, \vec{k}) = \frac{-1}{k^2 - m^2 + i\epsilon}$$

The thermal propagator may be diagonalised in the form

$$D^{ab}(k_0, \vec{k}) = U^{ac}(k_0)[\operatorname{diag}\{\Delta(k_0, \vec{k}), -\Delta^*(k_0, \vec{k})\}]^{cd}U^{db}(k_0)$$

with the elements of the diagonalising matrix as

$$U^{11} = U^{22} = \sqrt{1+n}, \quad U^{12} = U^{21} = \sqrt{n}$$

Real Time Formalism

- ullet From spectral representations, one can show that U diagonalises also the full propagator
- As a consequence, the matrix Σ^{ab} is also diagonalisable by $(U^{-1})^{ab}$,

$$\Sigma^{ab}(q) = [U^{-1}(q_0)]^{ac} [\operatorname{diag}\{\overline{\Sigma}(q), -\overline{\Sigma}^*(q)\}]^{cd} [U^{-1}(q_0)]^{db}$$

• The diagonal component can be obtained from the 11-component Σ^{11} as ${\rm Im}\overline{\Sigma}=\tanh(\beta q_0/2){\rm Im}\Sigma^{11}$

$$Re\overline{\Sigma} = Re\Sigma^{11}$$

 The diagonal components (barred quantities) satisfy the same Dyson equation as the matrix form

$$\overline{D} = \overline{D}_0 + \overline{D}_0 \ \overline{\Sigma} \ \overline{D}$$