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Abstract

Several advantages in the use of a Pauli-Villars regularization procedure in extended Nambu—
Jona-Lasinio models with Polyakov loop are discussed.
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1. Introduction

It has been shown that the extension of the Nambu—Jona-Lasino Model in the light
quark sector (u, d and s) to include the 't Hooft determinantal interaction (NJLH)
which explicitly breaks the unwanted axial symmetry introduces a ground state stability
problem [1] which can be solved by the addition of general non-derivative spin-zero eight
quark interaction terms (NJLHS8) [2]. The model parameters can be fitted in such a
way that the low lying scalar and pseudoscalar spectra are left relatively unchanged
(apart from a decrease in the sigma meson mass) throughout a wide range of values for
the OZI-violating part of these 8q interactions [3]. They were however shown to have a
significant impact on the position of the critical endpoint where the transition goes from
crossover to first order (the CEP is moved to lower chemical potential and increasing
temperature with stronger 8q interactions) [4] as well as the temperature at which the
transition occurs (lowered for stronger 8q interactions) [5]. The extension of this model
to include the Polyakov loop (PNJL) can be done straightforwardly [6] and enables the
simultaneous study of chiral restoration and deconfinement (at least approximately).
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The transition between the confined-deconfined phases is driven by the temperature
dependence of the additional pure gluonic term, the Polyakov potential, ¢, for which
several forms have been proposed. In [7] a polynomial form motivated by a Ginzburg-
Landau ansatz was used. In [8] a logarithmic term inspired by the Haar measure of
SU(N,) group integration is introduced. In [9] this logarithimic term is combined with
an exponential term derived in the strong coupling expansion of the lattice QCD action,
and in [10] the polynomial and logarithmic forms are combined (for details see these
references and our discussion thereof in [6] where we also discuss the parametrization).

Integrating the gap equations selfconsistently with the stationary phase equations,
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(where my and My are the current and dynamical masses respectively), the thermody-
namical potential is obtained [4] (T is the temperature, p the chemical potential, G,
K, g1 and go are the coupling strengths of the of the NJL, ’t Hooft, OZI-violating and
non-violating 8-quark interactions):
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The effect of the Polyakov loop was included straightforwardly by noting that its phase
enters the action as an imaginary p thus resulting in the following generalizations:
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Here E, |? Bl?+ M? and the (anti-)quark occupation numbers are give as usual by:
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The use of a covariant regulator with two Pauli-Villars (PV) subtractions in the mo-

mentum integrand function (pap, = 1— (1 — A28pg) exp (AQ(’?Z,%)) results in the correct

asymptotic behavior of several thermodynamic quantities when T — oo [5,6]. This fea-
ture that had been reproduced using a 3D momentum cutoff (2 = © (A — |pz|)) only
by eliminating the cutoff in the convergent parts of the relevant integrals, can be done
here while consistently maintaining the cutoff over all contributions. Here we show that
using this procedure several undesirable features are eliminated, such as the deviation
of the asymptotic solution for the Polyakov loop from the value dictated by the pure
gluonic term that is added to the potential (the Polyakov potential), or the feature that
the dynamical mass of the quark is going below the current mass value, or the inabil-
ity to obtain the Stefan-Boltzmann asymptotic limit for pressure as a function of the
temperature.



The vacuum and medium contributions can be separated and depending on the choice
of the regularization procedure we obtain:
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We use the notation with the subscripts M and 0 denoting the quantities defined in (3)
evaluated at those values for the mass (for the M = 0 case we also set ¢ = ¢ = 1) [4][6].
The constants of integration, C (T, u), resulting from the integration of the gap equa-
tions over the mass are chosen as to counterbalance the part stemming from the zero-mass
limit of integration and are therefore given by (note that while this may not be the stan-
dard way used to derive the 3D result the final result is equivalent to the usual one):
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2. Results

Here we only present some selected results which illustrate the key points, for a more
complete exposition and further details we refer to [6]. We tested the above mentioned
four different regularization procedures (PV /3D, with/without regularization of the con-
vergent medium contribution) with the four mentioned Polyakov potential forms, using
parameter sets with and without eight quark interactions. The analysis of the normal-
ized pressure difference at vanishing chemical potential which serves as a measure for the
effective degrees of freedom, v(T) = (p(T) — p(0))/(7>T*/90), reveals that the failure to
reach the Stefan-Boltzmann limit only happens in the case where we use the 3D cutoff
everywhere (see Fig. 1a).

The removal of the cutoff in the medium part results in the dynamical mass dropping
below the current mass going asymptotically to zero with the temperature increase (which
happens for all the mentioned potential forms, see Fig. 1b for an example) as well as an
overshooting of the asymptotic solution dictated by the pure gluonic part in the case of
the potentials taken from [7] (see Fig. 1¢), [9] and [10] (in [8] the logarithmic divergence
prevents this from happening). This overshooting does not occur if the cutoff is kept (see
Fig. 1c and 1d for the g = 0 and p > 0 cases respectively).

We can trace back the reason for these behaviours to the asymptotic behaviour of the
derivatives of J_; with respect to M, ¢ and ¢ when T — oo: the derivative with respect
to the mass diverges as T2 upon removal of the cutoff whereas it goes to zero when the
cutoff is removed; the derivative with respect to ¢ (¢) diverges with T upon the removal
of the cutoff, the same order as the derivative of U, originating a deviation from the
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solution dictated by the latter. The divergence is lower with cutoff and in this case the
asymptotic solution is dictated by the Polyakov potential.
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Fig. 1. Temperature dependence ([T] = GeV) in the PNJLH model with U/ from [7] of: a) the number
of effective degrees of freedom, v(7T') (thick lines using PV and thin using 3D, dashing denotes the
removal of the cutoff in the medium contributions); dynamical mass of the quarks ([M;] = GeV) using
PV regularization (thinner lines correspond to the removal of the cutoff in the medium; 3D results are
qualitatively similar); ¢) ¢ at u = 0 (¢ = ¢) the thick lines refer to the use of PV and thin to 3D (dashed
with only the vacuum regularized); d) ¢ in full lines and ¢ in dot-dashed lines at u = 100 MeV, thick
and thin lines refer to PV and 3D respectively (only the cases with cutoff everywhere are displayed).

3. Conclusions

These qualitative features appear to be independent of the choice of parametrization
(both of the quark interactions and the Polyakov potential) and are in fact a result of
the regularization. For the studied quantities the choice of PV regularization with the
cutoff kept over all contributions achieves the best results.
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