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Conjectured QCD Phase Diagram and Critical End point (CEP)

Features:
(1) Lattice QCD finds a rapid, but smooth
crossover at large T and |1,=0.

(2) Cross over region ends at a critical end

point.

(3) Various effective chiral models find a
strong 1* order transition beyond critical
end point when T and |, are moderately
large.

(4) Coordinates of CEP in (T,|,) plane vary

wildly.

(5) Intuitive physical explanations for CEP

and cross over do not exist.
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Lattice Gauge Theories

Features :

» Lattice calculations unreliable for 4 # 0 region.

Absence of probability measure & Sign problem

» Imaginary M, :de Forcrand & O. Phillipsen --> no CEP

* Taylor expansion of the pressure : Karsch; Gavai & Gupta

---> CEP

So, we need effective chiral models like NJL or other

phenomenological models.



A new Model for Hadron Gas EOS

Features

®* We have used full quantum statistics (in earlier version by Mishra et al.,

Boltzmann statistics has been used ) to explore the entire T-y, plane.

* The excluded volume model is thermodynamically consistent as we start from the
partition function and we get number density from it.

* We have used all the hadrons and their resonances upto mass of 2 GeV (to include the
effect of attractive interactions) in the HG.

®* We have considered a hard-core size for each baryon to include the effect of repulsive
interactions at high density.

* Mesons are treated as a pointlike particles because they don't have any hard - core size
and they overlap and fuse with each other.

*> We obtain hadron yields and compare with the experimental data. This gives confidence
in EOS for HG.

® We calculate the chemical freeze out curve on the phase boundary and show the

proximity of CEP to this curve.



EOS for the HG

The Grand canonical partition function -:

V—zvaj
’ " k'dk
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Where g . 1s the degeneracy factor of ith species of baryon, E is the energy of the particle

X g
InZ% =
SN Y/

VO1s the eigen volume of one ith species of baryon and Z NV, " is the total volume
J
occupied by baryons.

We can rewrite above equation as  InZ~ =V (1 - Z nSVHILA
1

_ } k2dk
" 6”2T 0K +m] [exp( 4]

Ai = exp(%) is the fugacity of the particle, n*; is the number density of jth type

Where

of baryons after excluded volume correction.



Using the basic thermodynamical relation between number density and partition function

We can write as -
=1-R)IA -LX gf +A’(1-R)I,

l

Where R = z nfol.O 1s the fractional volume occupied. We can write R in an opera-

oy _ R 0 _ 0y 70 /0 32
torequation—R_R+QR Where R—1+R0w1th Ri _Zn"Vi +ZliVi Ai
1
And the operator () = — ZIfll.OViOAI. —
1+Ro % 0A,

N 2
Using Neumann iteration method, we get after truncation upto (Q term
( further terms give small COIltI‘lbuthIl) 2

R+QR+Q R

Solving this equation numerically, we can get R and hence the total pressure of hadron gas after

Excluded volume correctionis - P, ;é =T(—-R) Z Il iAi + Z Pl.meson
l l
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Particle ratios calculated by our model and its comparison with data from Heavy Ion collision
experiments. [Ref: C. Blume, J. Phys. G 31, S57 (2005); A. Andronic et. al., arXiv:0911.4806v3
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EOS for OGP---> Quasiparticle Model

- Quasiparticles are the thermal excitations of the
interacting quarks and gluons.

- First proposed by Goloviznin and Satz and then by
Peshier et al. [Rref: V. Golovinznin and H. Satz, Z. Phys. C 57, 671 (1993): A.

Peshier et. al., Phys. Rev. D 54, 2399 (1996)]

- The Quasiparticle Quark Gluon Plasma(qQGP) 1s a
phenomenological model, used to describe the non
1deal behaviour of quark gluon plasma (QGP)



Quasiparticle Model

System of interacting effectively Ideal gas of “massive” non-interacting

massless particles particles

[Ref: A. Peshier et. al., Phys. Rev. D 54, 2399 (1996)]

Dispersion relation for these massive particles is assumed as :
— 7,2 2
Brerey  ¢* (k,m) = k> +m*(T)

Where m(T) — temperature - dependent mass
and k — momentum of the particle

Effective masses : (Using Finite temperature field theory)

N N,
For Gluons m§ (T) = ?C g 2 (T)T2 (1+ ?f) Where N is the no. of colours

Z / Where N, is no. of flavours of quarks and y; is chemical potential

4T

2 2 2
)T
For quarks quf (T) = s M7 () E + Hy E

N, =N, +

6 TT?



g (T) is the QCD running coupling constant [ Ref : V. M. Bannur, Eur. Phys. J. C 50, 629 (2007)]

H T ,qu

T = AT D 3(153—19nf)1n(21n/\T 1+aT2) C
; 2 -
(33 2n )IHH* 1"‘61 ﬁ (33—2nf)21n5'\3 1+a;{2H E
Td [ w-
Pressure of QGP — Pl_d = 1_J'k2dk Infd 1€Xp% ( 'uq) %
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E density of QGP E. = d } K dka
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But this model doesn’t satisfy the dP(T) Thermodynamical

thermodynamic relation — £ (T) =T——=—-P(T) :
dT Inconsistency




Two different approaches were proposed to remove this ““ inconsistency”

(1)_Quasiparticle Model I (QPM 1)
[Ref:A. Peshier et. al., Phys. Rev. D 54, 2399 (1996)]; M. I. Gorenstein and S. N. Yang,
Phys. Rev. D52, 5206 (1995)]

In this model the above inconsistency is handled by introducing a “temperature dependent
vacuum energy”’ term which effectively cancelled the inconsistent term.

So the pressure and energy density for the system of quasiparticles can be written in a
thermodynamically consistent manner as follows :

P=P,-B(T,u)
E=¢E,+B(T,U)

dm*(T)", k*dk

T dexllwu, 77

Where B(T, u) = B, - n2 J'dT

In our calculation we taken B01’4=185 MeV and T =100 MeV.



(2) Quasiparticle Model II (QPM II) [ Ref : V. M. Bannur, Eur. Phys. J. C 50, 629 (2007); Phys.
Lett. B647, 271 (2007)]

In QPM II , Bannur has suggested that the relation between pressure and grand canonical partition
function cannot hold good if the particles of the system have a temperature-dependent mass. So
we should start with the definition of average energy density and average number of particles and
derived all the thermodynamical quantities from them in a consistent manner.

;iﬂg £,(x,D+(-D""d cosh%i% (x, D)+ (- 1)“—5(x1)[

dT? - -1
= iqTZ ;(—1) llsmh(,u /T) (xl)

with & (xl)= (xl.l)3K1 (x,l)+ 3(xl.l)2K2 (x.l)

Where K, and K, are the modified bessel’s functions.

In this model , the effective mass of the quarks is :

2 _ 2 2
m (T)=m + \/quomm +m,



Where m, is the rest mass of the quarks. In our calculation, we have used mq0=8 MeV
for two light quarks (u ,d), and m_ =80 MeV for strange quarks. In the above Eq. m
represents the thermal mass of the quarks.

N:-10, w )
my (T, 1) = —S— [T + 4’
SN B T Q

Pressure of the system at p, =0 can be obtained as :

P(T 0) _ I T (T, u 0)

Where P, is the pressure at a reference temperature 7, . We have used P, = 0 at
T,=100 MeV in our calculation.

Using the relation between the number density and the grand canonical partition function,
we can get the pressure for a system at finite M,

Hq

P(T.p,)=P(T.0)+ [n,dy,
0
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Comparison : Quasiparticle Models Vs. Lattice data

To fix the values of the parameters
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We have chosen the solid line as best fit and taken the values of the parameters from

this fit. (A =115 MeV and T =100 MeV)



Deconfinement transition using

Gibbs’ Criteria :

Using Maxwell construction, first order phase transition occurs when: P,

(Toue) = Po(T,np), this ensures mechanical, chemical and thermal equilibrium

between HG and QGP phases.
In cross over region, P, > Py (always), so mostly pions and quarks, gluons

coexist.

End point of first order line is taken as critical end point.

We get deconfining first order phase transition curve. We compare with the
phase boundary obtained in the earlier analysis where we used Bag model EOS
for QGP. Reference : QCD Phase Boundary and Critical Point in a Bag Model

Calculation C. P. Singh, P. K. Srivastava, S. K. Tiwari, Phys. Rev. D 80,

114508 (2009)
We have used two different QGP EOS based on quasiparticle models which

explain the lattice data very well.



QCD Phase diagram using Quasiparticle Model EOS for QGP

P -->Ist order phase transition curve in Bag Model
BM--> End point in Bag Model

P --> Ist order phase transition curve in QPM 1
C --> End point in QPM I
P --> Ist order phase transition curve in QPM II

C,--> End Point in QPM 11

F --> Chemical Freeze-out curve

All other labels from--> P.K.S. , S.K.T. & C.P.S.,

Phys. Rev. D 82, 014023 (2010)
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Conclusions & Inferences:

We have given a new thermodynamically consistent excluded volume model which fits
well the hadron yields data of RHIC. We have determined the chemical freeze out curve
and compare its proximity to CEP.

We have used two different versions of QOGP EQOS based on quasiparticles which
reproduce the lattice data very well.

By Maxwell construction, we got a first order deconfining phase transition : P, (T, pu,)

=P, (T, p,) which ends on a critical point. Usually other models determine CEP in

chiral phase transition.

We have got a crossover region beyond critical end point where P, > Py (always) and

so we infer that quarks, gluons and mesons coexist in this region.

The critical end point found in this model supports our previous result (PRD 80, 114508
(2009)) obtained in Bag model.



